Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; 63(19): e202400644, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38470139

RESUMEN

Chiral hybrid organic-inorganic metal halides (HOMHs) offer an ideal platform for the advancement of second-order nonlinear optical (NLO) materials owing to their inherent noncentrosymmetric structures. The enhancement of optical nonlinearity of chiral HOMHs could be achieved by matching the free exciton and/or self-trapped exciton energy levels with desired NLO frequencies. However, the current scarcity of resonance modes and low resonance ratio hamper the further improvements of NLO performance. Herein, we propose a new resonant channel of charge transfer (CT) excited states from metal halide polyhedra to organic ligand to boost the second-order optical nonlinearity of chiral HOMHs. The model lead halide (C7H10N)PbBr3 (C7H10N=1-ethylpyridinium) exhibits a drastically enhanced second harmonic generation in resonance to the deep CT exciton energy, with intensity of up to 111.0 times that of KDP and 10.9 times that of urea. The effective NLO coefficient has been determined to be as high as ~40.2 pm V-1, balanced with a large polarization ratio and high laser damage threshold. This work highlights the contribution of organic ligands in the construction of a resonant channel for enhancing second-order NLO coefficients of metal halides, and thus provides guidelines for designing new chiral HOMHs materials for advanced nonlinear photonic applications.

2.
JACS Au ; 4(2): 279-300, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425899

RESUMEN

Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.

3.
Chem Sci ; 15(10): 3530-3538, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455020

RESUMEN

Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.

4.
Sci Rep ; 14(1): 4753, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413665

RESUMEN

This study aimed to probe into the anatomic course of inferior alveolar nerve canal (IANC) in hemifacial microsomia (HFM) on a large scale, morphological observations and further quantitative study were performed. Patients were classified by Pruzansky-Kaban classification. The anatomic course of IANC was analyzed morphologically with three-dimensional (3D) imaging software among 248 patients. Seven distances between fixed landmarks on both sides were measured for 236 patients. The differences between affected and unaffected sides were compared. Significant differences were found in the entrance (P < 0.001), route (P < 0.001), and exit (P < 0.05) of IANC in type IIb and III HFM. The higher the degree of mandibular deformity was, the higher the incidence of IANC variation was (P < 0.05). The distances in the horizontal aspect of IANC including from mandibular foramen to mental foramen (P < 0.05) and from mental foramen to gonion (P < 0.05) were significantly shorter on the affected side. Abnormalities of the anatomical course of IANC exist in patients with Pruzansky-Kaban type IIb and type III HFM. The reduction of IANC on the affected side in the horizontal distance is more obvious. Three-dimensional imaging assessment is recommended before surgery.


Asunto(s)
Síndrome de Goldenhar , Humanos , Tomografía Computarizada por Rayos X/métodos , Mandíbula/diagnóstico por imagen , Imagenología Tridimensional/métodos , Nervio Mandibular/diagnóstico por imagen
5.
Trials ; 25(1): 42, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216974

RESUMEN

BACKGROUND: Mandibular distraction osteogenesis (MDO) is a major part of the treatment for hemifacial microsomia patients. Due to the narrow surgical field of the intraoral approach, osteotomy accuracy is highly dependent on the surgeons' experience. Electromagnetic (EM) tracking systems can achieve satisfying accuracy to provide helpful real-time surgical navigation. Our research team developed an EM navigation system based on artificial intelligence, which has been justified in improving the accuracy of osteotomy in the MDO in animal experiments. This study aims to clarify the effect of the EM navigation system in improving the MDO accuracy for hemifacial microsomia patients. METHODS: This study is designed as a single-centered and randomized controlled trial. Altogether, 22 hemifacial microsomia patients are randomly assigned to the experiment and control groups. All patients receive three-dimensional CT scans and preoperative surgical plans. The EM navigation system will be set up for those in the experiment group, and the control group will undergo traditional surgery. The primary outcome is the surgical precision by comparing the osteotomy position of pre- and postoperative CT scan images through the Geomagic Control software. The secondary outcomes include mandibular symmetry (occlusal plane deviation angle, mandibular ramus height, and body length), pain scale, and complications. Other indications, such as the adverse events of the system and the satisfactory score from patients and their families, will be recorded. DISCUSSION: This small sample randomized controlled trial intends to explore the application of an EM navigation system in MDO for patients, which has been adopted in other surgeries such as orthognathic procedures. Because of the delicate structures of children and the narrow surgical view, accurate osteotomy and protection of nearby tissue from injury are essential for successful treatment. The EM navigation system based on artificial intelligence adopted in this trial is hypothesized to provide precise real-time navigation for surgeons and optimally improve patient outcomes, including function and aesthetic results. The results of this trial will extend the application of new navigation technology in pediatric plastic surgery. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2200061565. Registered on 29 June 2022.


Asunto(s)
Síndrome de Goldenhar , Osteogénesis por Distracción , Niño , Humanos , Preescolar , Adolescente , Síndrome de Goldenhar/diagnóstico por imagen , Síndrome de Goldenhar/cirugía , Inteligencia Artificial , Osteogénesis por Distracción/efectos adversos , Osteogénesis por Distracción/métodos , Método Simple Ciego , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
J Am Chem Soc ; 145(49): 26833-26842, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039190

RESUMEN

Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.

7.
Inorg Chem ; 62(49): 20520-20527, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38033304

RESUMEN

In order to reveal the integrated effect of inorganic lattice structure disturbances and chiral ligands on the structure of tin halide hybrid materials, we show the synthesis, crystal growth, dissolution recrystallization structural transformation (DRST), optical properties, energy band structure, and nonlinear optical properties of a class of chiral tin bromide R/S-2-mpip[SnBr3]Br (2-mpip is 2-methylpiperazinium) and R/S-2-mpipSnBr6 for the first time. The formation of R/S-2-mpipSnBr6 in solution was interestingly caused by irreversible DRST of R/S-2-mpip[SnBr3]Br. The second-harmonic generation response of the new phase R-2-mpipSnBr6 is significantly enhanced compared to that of the initial phase R-2-mpip[SnBr3]Br. These structural transformations of chiral tin bromides reflect, to some extent, the DRST commonality of the tin halide family induced by oxidation and serve as a starting point for investigating the structural chirality and asymmetry of chiral metal hybrid halides.

9.
J Plast Reconstr Aesthet Surg ; 84: 595-604, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451235

RESUMEN

PURPOSE: Surgical guide plates can improve the accuracy of surgery, although their design process is complex and time-consuming. This study aimed to use artificial intelligence (AI) to design standardized mandibular angle ostectomy guide plates and reduce clinician workload. METHODS: An intelligence algorithm was designed and trained to design guide plates, with a safety-ensuring penalty factor added. A single-center retrospective cohort study was conducted to test the algorithm among patients who had visited our hospital between 2020 and 2021 for mandibular angle ostectomy. We included patients diagnosed with mandibular angle hypertrophy and excluded those combined with other facial malformations. The guide plate design method acted as the primary predictor, which was AI algorithm vs. experienced residents. Moreover, the symmetry of plate-guided ostectomy was chosen as the primary outcome. The safety, shape, location, effectiveness, and design duration of the guide plate were also recorded. The independent samples t-test and Pearson's chi-squared test were used and P-values < 0.05 were considered significant. RESULTS: Fifty patients (7 men, 43 women; 27 ± 4 years) were included. The two groups differed significantly in terms of safety (7.02 vs. 5.25, P < 0.05) and design duration (24.98 vs. 1685.08, P < 0.05). The ostectomy symmetry and shape, location, and effectiveness of the guide plates did not differ significantly between the two groups. CONCLUSIONS: The intelligent algorithm can improve safety and save time for guide plate design, ensuring other quality of the guide plates. It has good potential applicability in accurate mandibular angle ostectomy.


Asunto(s)
Inteligencia Artificial , Mandíbula , Masculino , Humanos , Femenino , Estudios Retrospectivos , Mandíbula/cirugía , Placas Óseas
10.
Chem Commun (Camb) ; 59(48): 7447-7450, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37254664

RESUMEN

Chiral hybrid metal halides have grabbed extensive attention in linear and nonlinear chiroptics. Herein, 0D chiral zinc halides, (R-/S-2-MP)ZnCl4, have been fabricated, which demonstrate high efficiency second-order nonlinear optical responses. Incorporating Sb3+ into the chiral zinc halide matrix triggers the circularly polarized luminescence effectively with a balance between quantum yield and luminescence dissymmetry factor.

11.
Front Pediatr ; 11: 1158078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228439

RESUMEN

Introduction: This study aimed to verify the accuracy and safety of distraction osteogenesis for hemifacial microsomia assisted by a robotic navigation system based on artificial intelligence. Methods: The small sample early-phase single-arm clinical study, available at http://www.chictr.org.cn/index.aspx, included children aged three years and older diagnosed with unilateral hemifacial microsomia (Pruzansky-Kaban type II). A preoperative design was performed, and an intelligent robotic navigation system assisted in the intraoperative osteotomy. The primary outcome was the accuracy of distraction osteogenesis, including the positional and angular errors of the osteotomy plane and the distractor, by comparing the preoperative design plan with the actual images one week postoperatively. Perioperative indicators, pain scales, satisfaction scales, and complications at one week were also analyzed. Results: Four cases (mean 6.5 years, 3 type IIa and 1 type IIb deformity) were included. According to the craniofacial images one week after surgery, the osteotomy plane positional error was 1.77 ± 0.12 mm, and the angular error was 8.94 ± 4.13°. The positional error of the distractor was 3.67 ± 0.23 mm, and the angular error was 8.13 ± 2.73°. Postoperative patient satisfaction was high, and no adverse events occurred. Discussion: The robotic navigation-assisted distraction osteogenesis in hemifacial microsomia is safe, and the operational precision meets clinical requirements. Its clinical application potential is to be further explored and validated.

12.
Front Pediatr ; 11: 1157607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138574

RESUMEN

Introduction: This study aims to quantitively analyze mandibular ramus and body deformities, assessing the asymmetry and progression in different components. Methods: This is a retrospective study on hemifacial microsomia children. They were divided into mild/severe groups by Pruzansky-Kaban classification and into three age groups (<1 year,1-5 years, 6-12 years old). Linear and volumetric measurements of the ramus and the body were collected via their preoperative imaging data to compare between the different sides and severities, using independent and paired tests, respectively. The progression of asymmetry was assessed by changes in affected/contralateral ratios with age using multi-group comparisons. Results: Two hundred and ten unilateral cases were studied. Generally, the affected ramus and body were significantly smaller than those on the contralateral side. Linear measurements on the affected side were shorter in the severe group. Regarding affected/contralateral ratios, the body was less affected than the ramus. Progressively decreased affected/contralateral ratios of body length, dentate segment volume, and hemimandible volume were found. Discussion: There were asymmetries in mandibular ramus and body regions, which involved the ramus more. A significant contribution to progressive asymmetry from the body suggests treatment focus in this region.

13.
J Pers Med ; 13(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36983670

RESUMEN

The relationship between oxidized lipid metabolism and the immunological function of cancer is well known. However, the functions and regulatory mechanisms of lncRNAs associated with oxidized lipid metabolism in head and neck squamous cell carcinoma (HNSCC) remain to be fully elucidated. In this study, we established an oxidized lipid metabolism-related lncRNA prognostic signature to assess the prognosis and immune infiltration of HNSCC patients. The HNSCC transcriptome was obtained from The Cancer Genome Atlas. The choice of the target genes with a relevance score greater than 10 was performed via a correlation analysis by GeneCards. Patients were categorized by risk score and generated with multivariate Cox regression, which was then validated and evaluated using the Kaplan-Meier analysis and time-dependent receiver operating characteristics (ROC). A nomogram was constructed by combining the risk score with the clinical data. We constructed a risk score with 24 oxidized lipid metabolism-related lncRNAs. The areas' 1-, 2-, and 3-year OS under the ROC curve (AUC) were 0.765, 0.724, and 0.724, respectively. Furthermore, the nomogram clearly distinguished the survival probabilities of patients in high- and low-risk groups, between which substantial variations were revealed by immune infiltration analysis. The results supported the fact that oxidized lipid metabolism-related lncRNAs might predict prognoses and assist with differentiating amid differences in immune infiltration in HNSCC.

14.
J Craniofac Surg ; 34(2): 820-825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730115

RESUMEN

Rapid developments in 3-dimensional(3D) printing technologies in craniofacial plastic surgery have provided a new treatment modality for patients. In this article, we intend to share our institution's experience using 3D printing in 3 modes-namely, 3-dimensional printing for manufacturing contour models, guides, and implants. Fifty-nine patients were enrolled in our study between September 2009 and September 2021. Among the 3D printing-assisted technologies, 41 cases were used for congenital malformations, 82 for trauma repair, and 112 for cosmetic surgery. Preoperative design and postoperative data were compared and analyzed based on imaging data. In craniofacial plastic surgery, all patients had excellent postoperative objective bone measurements close to the preoperative design and improved esthetic appearance. Our survey of postoperative satisfaction showed that patients were quite satisfied with the surgery, especially concerning congenital deformities. Rapid prototyping 3-dimensional printing technology provides a practical and anatomically accurate means to produce patient-specific and disease-specific translational tools. These models can be used for surgical planning, simulation, and clinical evaluation. Expanding this technology in craniofacial plastic surgery will provide adequate assistance to practitioners and patients.


Asunto(s)
Implantes Dentales , Procedimientos de Cirugía Plástica , Cirugía Asistida por Computador , Cirugía Plástica , Humanos , Impresión Tridimensional , Cirugía Asistida por Computador/métodos
15.
J Craniofac Surg ; 34(2): 813-816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730634

RESUMEN

Since our team reported the application of robot-assisted surgery in facial contouring surgery in 2020, further clinical trials with large samples have been conducted. This paper will report the interim results of a single-center, large-sample randomized controlled trial of the first robot developed by our team for facial contouring surgery. Meanwhile, this research field will be systematically reviewed and prospected.


Asunto(s)
Procedimientos Ortopédicos , Procedimientos Quirúrgicos Robotizados , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Cara , Huesos Faciales
16.
J Craniofac Surg ; 34(2): 809-812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36728424

RESUMEN

BACKGROUND: Hemifacial microsomia (HFM) is one of the most common congenital craniofacial condition often accompanied by masseter muscle involvement. U-Net neural convolution network for masseter segmentation is expected to achieve an efficient evaluation of masseter muscle. METHODS: A database was established with 108 patients with HFM from June 2012 to June 2019 in our center. Demographic data, OMENS classification, and 1-mm layer thick 3-dimensional computed tomography were included. Two radiologists manually segmented masseter muscles in a consensus reading as the ground truth. A test set of 20 cases was duplicated into 2 groups: an experimental group with the intelligent algorithm and a control group with manual segmentation. The U-net follows the design of 3D RoI-Aware U-Net with overlapping window strategy and references to our previous study of masseter segmentation in a healthy population system. Sorensen dice-similarity coefficient (DSC) muscle volume, average surface distance, recall, and time were used to validate compared with the ground truth. RESULTS: The mean DSC value of 0.794±0.028 for the experiment group was compared with the manual segmentation (0.885±0.118) with α=0.05 and a noninferiority margin of 15%. In addition, higher DSC was reported in patients with milder mandible deformity ( r =0.824, P <0.05). Moreover, intelligent automatic segmentation takes only 6.4 seconds showing great efficiency. CONCLUSIONS: We first proposed a U-net neural convolutional network and achieved automatic segmentation of masseter muscles in patients with HFM. It is a great attempt at intelligent diagnosis and evaluation of craniofacial diseases.


Asunto(s)
Síndrome de Goldenhar , Humanos , Músculo Masetero , Inteligencia Artificial , Redes Neurales de la Computación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
17.
J Craniofac Surg ; 34(2): 805-808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36729378

RESUMEN

INTRODUCTION: In recent years, 3-dimensional (3D) printing has been widely used in regenerative medicine research and other fields because of its ability to customize macroscopic morphology and precisely control microstructure. Polymer scaffolds are 1 of the commonly used 3D bioprinting materials for defect repair and have recently been a research focus. Our article explored the bone-formation accelerating effect of 3D-printed porous scaffold Poly(glycerol sebacate) [PGS] in the critical bone defect of an enhancing rabbit mandibular model. Also, we overview and summarize the classification of 3D bioprinting materials and prospects for their various application scenarios in craniofacial reconstruction surgery. MATERIALS AND METHODS: A PGS elastomer scaffold was prepared by polymerizing equimolar amounts of sebacic acid and glycerol using a biological 3D printer. Six male New Zealand white rabbits were prepared (3 for the control group and 3 for the PGS group), each weighing 3 kg. Osteotomy was performed at the anterior edge of the ascending ramus of the mandible with a bone saw to open the 8 mm defect. Defects of the control group were empty, and defects of the PGS group were put into 8 mm-wide PGS elastomer scaffolds. The rabbits were euthanized 6 weeks after the operation, and the postoperative mandibles were collected. Information (presence or absence of pus from infection, nonunion, degree of macroscopic bone healing) was recorded, and the skeletal tissue was fixed in a paraformaldehyde solution. RESULTS: The mandible on the enhanced side was significantly longer than that on the opposite side, and the contralateral incisor was hyperplasia. The mandibles of rabbits in each group healed well, and there was no obvious local infection and purulence. The gross specimen appearance showed that both ends of the defect were connected. When comparing the reconstructed mandibles of the two groups, it is apparent that the width and thickness of the new bone in the PGS group were significantly better than that in the control group. CONCLUSIONS: This article verifies the effect of 3D polypore PGS scaffolds in animal craniomaxillofacial bone defects and introduces various application scenarios of 3D printing materials in craniomaxillofacial reconstruction surgery. There are quite good application prospects for 3D bioprinting in animal experiments and even clinical treatment of craniofacial defects.


Asunto(s)
Bioimpresión , Andamios del Tejido , Masculino , Conejos , Animales , Andamios del Tejido/química , Osteogénesis , Mandíbula , Elastómeros , Impresión Tridimensional , Ingeniería de Tejidos
18.
Drug Deliv ; 30(1): 2169414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36714914

RESUMEN

Icariin (ICA) played an important role in the treatment of inflammatory bone defects. However, pharmacokinetic studies have shown that its poor bioavailability limited its application. In this context, we isolated bovine milk-derived sEV and prepared sEV-ICA to improve the osteogenic effect of ICA. In this study, we successfully constructed sEV-ICA. sEV-ICA was found to have significantly higher osteogenic efficiency than ICA in cell culture and cranial bone defect models. Mechanistically, bioinformatics analysis predicted that signal transducers and activators of transcription 5 (STAT5a) may bind to the GJA1 promoter, while luciferase activity assays and chromatin immunoprecipitation (ChIP) experiments confirmed that STAT5a directly binded to the GJA1 promoter to promote osteogenesis. We proved that compared with ICA, sEV-ICA showed a better effect of promoting bone repair in vivo and in vitro. In addition, sEV-ICA could promote osteogenesis by promoting the combination of STAT5a and GJA1 promoter. In summary, as a complex drug delivery system, sEV-ICA constituted a rapid and effective method for the treatment of bone defects and could improve the osteogenic activity of ICA.


Asunto(s)
Leche , Osteogénesis , Animales , Diferenciación Celular , Flavonoides/farmacología , Flavonoides/uso terapéutico
19.
Clin Plast Surg ; 50(1): 71-80, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36396263

RESUMEN

In this article, authors mainly introduce new digital technology in facial bone contouring surgery. In our experience, these new technologies are crucial in ensuring the satisfaction of surgical accuracy. Our previous studies have shown surgeons can use precise pre-operative design to reduce operative time, reduce bleeding during surgery. Additionally, augmented reality can enhance the perspective perception of surgeons combining virtuality and reality. What's more, robot-assisted surgical technology also has a strong application prospect in facial contouring surgery. In the future, the combination of soft tissue contouring surgery will make the facial bone contouring surgery safer and more effective.


Asunto(s)
Huesos Faciales , Procedimientos Ortopédicos , Humanos , Huesos Faciales/cirugía , Estética , Cara/cirugía , Pueblo Asiatico
20.
J Craniofac Surg ; 34(2): 525-531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36173942

RESUMEN

This study aimed to investigate the feasibility and accuracy of osteotomy and distractor placement using a robotic navigation system in a model surgical experiment of mandibular distraction osteogenesis for hemifacial microsomia. Imaging data from 5 patients with Pruzansky-Kaban type II (IIa: 4; IIb: 1) mandibular deformities were used to print 3D models for simulated mandibular distraction osteogenesis. In the experimental group, a robot-assisted surgical navigation system was used to perform the surgery under robotic guidance following registration, according to the preoperative design. Conventional surgery was performed in the control group, in which the operation was based on intraoperative estimations of the preoperative design by experienced surgeons. The accuracies of the osteotomy and distractor placement were assessed based on distance and angular error. Osteotomy accuracy was higher in the experimental group than in the control group, and the distance error ( t =9.311, P <0.001) and angular error ( t =5.385, P =0.001) were significantly reduced. The accuracy of distractor placement was also significantly higher in the experimental group, while the distance error ( t =3.048, P =0.016) and angular error ( t =3.524, P =0.024) were significantly reduced. The present results highlight the feasibility of robot-assisted distraction osteogenesis combined with electromagnetic navigation for improved surgical precision in clinical settings.


Asunto(s)
Síndrome de Goldenhar , Osteogénesis por Distracción , Robótica , Humanos , Síndrome de Goldenhar/cirugía , Osteogénesis por Distracción/métodos , Estudios de Factibilidad , Sistemas de Navegación Quirúrgica , Imagenología Tridimensional/métodos , Mandíbula/cirugía , Asimetría Facial/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...